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Abstract A methodology for studying the linear stability of self-similar solutions is discussed. These funda-
mental ideas are illustrated on three prototype problems: a simple ODE with finite-time blow-up, a second-order
semi-linear heat equation with infinite-time spreading solutions, and the fourth-order Sivashinsky equation with
finite-time self-similar blow-up. These examples are used to show that self-similar dynamics can be studied using
many of the ideas arising in the study of dynamical systems. In particular, the use of dimensional analysis to derive
scaling invariant similarity variables is discussed, as well as the role of symmetries in the context of stability of
self-similar dynamics. The spectrum of the linear stability problem determines the rate at which the solution will
approach a self-similar profile. For blow-up solutions it is demonstrated that the symmetries give rise to positive
eigenvalues associated with the symmetries, and it is shown how this stability analysis can identify a unique stable
(and observable) attracting solution from a countable infinity of similarity solutions.

Keywords Dynamical systems · Scale-invariance · Self-similarity · Stability

1 Introduction

Self-similarity in an evolving system describes dynamics where the current solution can be rescaled (in time and/or
space) to exactly reproduce later states of the system. Self-similar behavior arises naturally in a wide spectrum of
applied settings and physical phenomena, and is captured in the mathematical evolution equations used to model
these phenomena [1–4].

For example, such self-similar behavior can be seen in many physical problems exhibiting diffusion, where a
localized initial distribution of heat, mass, or energy will spread, and after a rescaling, approach a universal profile
at large times. In the viscous spreading of a liquid drop on a flat surface, at large times the drop approaches an
axisymmetric form with a unique spatial profile upon rescaling the radius and the height [5,6]. Other examples are
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12 A. J. Bernoff, T. P. Witelski

the diffusion of a localized source of heat [7–10] and the viscous spreading of vorticity in a two-dimensional fluid
where the solutions approach a spreading Gaussian profile [11,12].

In contrast to problems where the self-similar behavior continues indefinitely (called ‘infinite-time’ behavior),
some systems form singularities in finite-time, usually associated with a change of topology or a physical quan-
tity diverging. If the magnitude of the solution is diverging, |u| → ∞, the behavior is generally called finite-time
blow-up. Blow-up has been studied extensively in reaction–diffusion equations in combustion theory [13] and math-
ematical biology [14]. Problems having the time-derivative of the solution diverging, |ut | → ∞, while the solution
remains bounded are said to exhibit quenching [15]. In quenching, spatial gradients of the solution will diverge
while the solution approaches a limit value, often |u| → 0, and in different physical contexts similar behavior (with
or without formation of a singularity in ut ) is called extinction, pinching, rupture, touch-down, or pull-in [16–18].
In the pinch-off of a thin liquid filament, as in a lava lamp or the break-up of a fluid jet, the profile of the pinching
neck assumes a universal shape as detachment is approached [19,20]. Other examples include rupture of a solid
filament due to surface diffusion [21], rupture of thin films [22–26], and the ignition of a combustible substance
[13].

In this paper we review some of the tools that have been developed in the past few decades for studying the
dynamics associated with self-similar behavior. In seminal work, Barenblatt made use of dimensional analysis to
classify the types of self-similar solutions observed as intermediate asymptotic states [1, Chap. 2], [2, Chap. 3].
This led to an explosion of work deriving, classifying, computing and rigorously analyzing self-similar solutions
in a wide array of systems (see the reviews [3,4,16,27,28], [29, Chap. 4] and references therein).

We concentrate on describing a linear stability theory for self-similar evolutions. To study stability, the governing
equation in original variables is transformed into an equation in similarity variables. The proper choice of similarity
variables maps the similarity solution of the original problem to a steady state of the transformed equation. The
dynamics are then linearized about this steady state. For PDEs, appropriate boundary conditions must be posed
to complete the linear problem. For infinite-time spreading dynamics, it may be appropriate to assume that the
solution is advancing into an undisturbed medium [7]. For finite-time singular behavior, boundary conditions are
posed in a matching region that is near to the blow-up in primitive variables but lies in the far-field with respect to
the self-similar variables [25,26].

In systems where self-similar dynamics are approached, stability theory determines the rate at which solutions
converge to a self-similar profile. Due to the symmetries of the original problem, self-similar dynamics always exist
in continuous families of solutions with degrees of freedom tied to symmetry modes (e.g. translation invariance in
time or space). This gives rise to the idea of optimal asymptotics [9,10], where an optimal member of the parame-
trized family of similarity solutions is determined to maximize the rate of convergence to the solution from given
initial conditions. Symmetry modes can be associated with the exponential separation of solutions on the manifold
of similarity solutions generated by the physical symmetries (e.g. spatial and temporal translation, rotation, etc.)
of the problem. Properly accounting for the linearized contributions of the symmetry modes selects the optimal
self-similar solution. For finite-time blow-up, if the remainder of the linearized spectrum of a similarity solution
is stable, non-optimal choices of symmetry parameters can be misinterpreted as instabilities of otherwise stable
self-similar dynamics.

We use three examples to illustrate ideas:

1. First, a third-order nonlinear ODE for u(t),

d3u

dt3 = u4. (1.1)

This problem has singular solutions with finite-time blow-up. We use it to introduce the connections between
symmetries and stability analysis.

2. Second, a semi-linear heat equation with absorption for u(x, t),

∂u

∂t
= ∂2u

∂x2 − |u|qu, (1.2)
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Stability and dynamics of self-similarity 13

where q > 0. The similarity solutions of this problem exhibit a bifurcation from linear to nonlinear spreading
behavior depending on the power of the nonlinearity.

3. Finally, blow-up of u(x, t) governed by the Sivashinsky equation,

∂u

∂t
= − ∂2

∂x2 (u
2)− σ

∂2u

∂x2 − ∂4u

∂x4 . (1.3)

This problem has an infinite number of self-similar solutions as has been observed in singularity formation in
other higher-order PDEs. In particular, we show that the stability analysis identifies a unique stable blow-up
solution.

These three examples are arranged in order of increasing complexity and are used to represent broader classes of
problems.

While similarity solutions for ODEs are often derived via symmetry methods, e.g. [30, Chap. 4], [31, Chap.
3], [32, Chap. 1], [33, Chap. 3] the linear stability of these solutions is rarely studied. We describe a method for
studying the linear stability of the similarity solutions to (1.1) and use it to argue that generic initial conditions yield
solutions that exist only for a finite-time interval, blowing-up both forwards and backwards in time from generic
initial data. Such ODEs are also used in the analysis of blow-up in some PDEs [34].

Equation 1.2 is a special case of the general semi-linear heat equation,

ut = ∇2u + g(u), (1.4)

which has been studied exhaustively (see [27,29,35–38] and references therein), primarily when g(u) is a positive,
nonlinear source term leading to finite-time blow-up. We will concentrate on (1.2) where g(u) = −|u|qu is an
absorption term. For this class of equations, global existence is easily established and one can prove the existence
of a unique attracting exponentially-localized infinite-time self-similar spreading solution for (1.2) and its gener-
alization to higher dimensions [39–41]. Different ranges for values of the parameter q yield either diffusion- or
absorption-dominated dynamics. This bifurcation was analyzed by Wayne [42] via center-manifold theory, inspired
by the renormalization group ideas of Bricmont and Kupianen [43,44] and earlier center-manifold ideas of Kohn
and collaborators [37,45] and Bebernes [46, Chap. 3]. For q < 0 Eq. 1.2 has strong absorption that can produce
finite-time extinction [16]. More recently the self-similar solutions of (1.2) were studied by Galaktionov and Wil-
liams [47] as part of a hierarchy of absorption–diffusion equations with higher–order diffusion; also see the book
by Galaktionov and Vazquez [48, Chap. 4] for a review of the extensive literature on this problem.

In considering higher-order nonlinear problems, we will apply the stability theory to finite-time blow-up for a
PDE in the case of the Sivashinsky equation (1.3) which describes directional solidification [49,50] or clumping
of biological organisms [51]. Blow-up in this model equation was established by Novick-Cohen [52,53] using an
energy method [54]. These results were sharpened and extended by Bernoff and Bertozzi [55], who studied a related
modified Kuramoto–Sivashinsky equation

wt = (1 − α)w2
x ± αw2

xx − σwxx − wxxxx , (1.5)

for 0 < α ≤ 1. For α = 1 this equation can be transformed to (1.3) by differentiating twice and letting u = wxx .
Bernoff and Bertozzi [55] showed that for periodic initial data, depending on the stability of the trivial solution in
(1.5), either: (i) if it is unstable, there exists arbitrarily small initial data which lead to finite-time blow-up (ii) if
it is stable, there exists a class of finite-amplitude initial data that leads to finite-time blow-up. Numerical results
indicated that the solution generically becomes pointwise infinite at a finite time.

Equation 1.3 is also a singular limit of the unstable thin-film equation [56–58]

ut = −(umux )x − (unuxxx )x , (1.6)

for the case m = 1, n = 0. This equation generalizes lubrication models of thin films [6]. Note that for n > 0, there
exists solutions of fixed sign, whereas for n = 0 not only are solutions allowed to change sign, but when a solution
blows up, it must change sign (cf. Bertozzi and Pugh [56] and references therein). Bertozzi and Pugh conjectured
that this equation also manifests finite-time blow-up in the degenerate case when m + 2 ≥ n > 0 [57–60].
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Equation 1.3 is also a special case of the Cahn–Hilliard equation, a generalization of the n = 0 unstable thin-film
equation (1.6), and is related to other fourth-order nonlinear evolution equations [61]. Blow-up for m > 0 follows
from the earlier work of Levine [62] on a broad set of formally parabolic equations. This connection is described in
the review by Evans et al. [63], who also describe extensively the existence of countable sets of similarity solutions
for the Cahn–Hilliard equation and its generalizations to higher-dimensional axisymmetric problems. Our numerical
results on this problem follow the work of Bernoff and Bertozzi [55] closely, using the ideas described in [64]. Budd
and Piggott [65,66] describe further numerical approaches that are designed to take advantages of symmetries and
scale-invariance in computing singular solutions of ODEs and PDEs.

In the next section we analyze similarity solutions and their stability for the ODE problem (1.2). In Sect. 3, we
consider the semi-linear heat equation with absorption (1.3), and use bifurcation theory to examine the transition
from diffusively dominated to absorption-dominated spreading solutions at q = 2. In Sect. 4, we find a countable
infinity of self-similar blow-up solutions to the Sivashinsky equation, and use linear stability theory to identify the
unique stable profile. A brief discussion and conclusion is given in Sect. 5.

2 Self-similar behaviors in an ODE

Consider the third-order nonlinear ODE for u(t),

d3u

dt3 = u4, (2.1)

with initial conditions on (u, u′, u′′) at some time t0. Equations of the form u′′′ = u p for p < 0 have been studied
in connection with describing contact lines (where u → 0) of fluid films [67,68]; Eq. 2.1 captures the finite-time
blow-up behavior that can occur for p > 1. The trivial solution u ≡ 0 is the only equilibrium, however, linearized
stability analysis is inconclusive as it is a degenerate fixed point. Note the righthand side of (2.1) is positive definite,
and it is easy to show that, if all of the initial data are positive, solutions grow without bound and hence u ≡ 0 must
be an unstable equilibrium. More insight on the behavior expected for general solutions can be obtained by using
the symmetries of the equation to find special solutions and to examine their stability.

We look for a scaling symmetry [2, Chap. 1], [30, Chaps. 1, 3], [31, Chap. 1], [33, Chap. 2], by asking if there
exist constants U,T such that the ansatz

u(t) = U û( t̂ ), t = T t̂, (2.2)

yields the same Eq. 2.1, applied to û(t̂ ), independent of the values of the scaling parameters U,T. This scaling of
the dependent and independent variables is often called dimensional analysis when applied to governing equations
for physical problems. It is used to recast the problem in terms of dimensionless variables and parameter groups.
As described by Barenblatt [2, Chap. 4], if dimensional analysis determines relations between all of the scaling
constants, then a first-kind similarity solution may exist. Here we find the constraint that U = 1/T, where T may
be chosen arbitrarily. As the product tu is independent of this parameter, we expect the existence of a solution with
tu = C for some constant, C . Substituting u(t) = C/t in (2.1) determines C = −61/3. We note that (2.1) is an
autonomous equation, invariant under time-translations, t → t − tc for any critical time tc. As such, we can write
a one-parameter family of singular solutions,

ū(t) = −
3
√

6

t − tc
. (2.3)

This can be written as

ū(t) =
3
√

6

tc − t
→ ∞ for (tc − t) ↘ 0, (2.4a)

namely, the solution is positive for t < tc and blows up in finite time as t → tc. In contrast, for t > tc the solution
is negative and decays to zero as t increases,

ū(t) = −
3
√

6

t − tc
→ 0 for (t − tc) ↗ ∞. (2.4b)
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Stability and dynamics of self-similarity 15

The existence of this one-parameter family of singular solutions of (2.1) is notable, but in order to make stronger
statements about whether or not these behaviors are representative of generic nontrivial solutions of (2.1) we must
study the stability of solution (2.3).

2.1 Stability of self-similar finite-time blow-up for t < tc

Let us define the time remaining until the blow-up time (tc) as τ ≡ tc − t > 0, and make a change of variables to
write general solutions of (2.1) in the form

u(t) = τ−1U (s), τ = tc − t, s = − log τ, (2.5)

where s is a stretched time variable describing evolution of transients for general solutions. Note that s → ∞
corresponds to t increasing to the critical time tc.

Substituting (2.5) in (2.1) yields the autonomous similarity equation for U (s),

d3U

ds3 + 6
d2U

ds2 + 11
dU

ds
+ 6U = U 4. (2.6)

The similarity-variable ansatz (2.5) has several interpretations. Observing that this choice of τ, s yields (2.6) as an
autonomous equation, ansatz (2.5) can be viewed as a separation of variables for a nonlinear equation. Alterna-
tively, the invariance of (2.6) with respect to the rescaling (2.2) motivates the logarithmic form of s, changing the
multiplicative scaling to a translational shift, s = − log(T τ̂ ) = − log(τ̂ )− log T = ŝ − ŝc, where ŝ = − log τ̂ and
ŝc = − log T .

Self-similar solutions are s-independent equilibria of (2.6): Ū = 0 remains the trivial solution and Ū = 3
√

6
corresponds to solution (2.4a). Linearizing about the self-similar solution, U (s) ∼ Ū + εŨ (s) with ε � 1 yields a
linear equation for infinitesimal perturbations to Ū ,

d3Ũ

ds3 + 6
d2Ũ

ds2 + 11
dŨ

ds
+ (6 − 4Ū 3)Ũ = 0. (2.7)

Substituting the trial solution Ũ (s) = eλs yields the eigenvalues λ1 = 1, λ2,3 = −7/2 ± i
√

23 and the general
linearized solution

U ∼ Ū + εŨ (s) = Ū + c1es + c2e−7s/2 cos(
√

23 s)+ c3e−7s/2 sin(
√

23 s). (2.8)

The two oscillatory modes decay as s → ∞. The λ1 mode has the apparent form of an instability, but as we will
demonstrate below it is in fact a symmetry mode, a by-product of the change to similarity variables (2.5) and reflects
the exponential divergence in s of the one-parameter family of similarity solutions.

We will demonstrate that the family of solutions with different blow-up times spread exponentially in s. The
change of variables (2.5) allows us to choose a blow-up time, tc. If this value is shifted, tc = t ′c + β, then we get

τ = τ ′ + β = τ ′(1 + β/τ ′) = τ ′(1 + βes′
), s = − log(τ ′ + β) = s′ − log(1 + βes′

), (2.9)

and β generates a one-parameter family of translated solutions from any solution U (s),

u(t) = 1

τ
U (s) = 1

τ ′

[
1

1 + βes′ U
(

s′ − log
(

1 + βes′))]
= 1

τ ′ U(s′). (2.10)

For the specific case of the blow-up solution, U (s) = Ū , we get

U(s′) = Ū

1 + βes′ = Ū − βŪes′ + O(β2), (2.11)

where we have expanded for β → 0, i.e., under the assumption of a small shift in the critical time. Using s′ ∼
s + O(β) we can compare the underlined terms in (2.11) and (2.8), showing that the λ1 mode corresponds to the
linearized action of the tc → tc + β symmetry. Therefore, the presence of the c1 term can be re-interpreted as
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16 A. J. Bernoff, T. P. Witelski

being due to an error in the value of the critical time. The underlined term in (2.8) can always be eliminated by the
appropriate shift to tc (here by the estimate β ≈ −c1/Ū ) to produce the optimal value for tc describing blow-up.
The optimal parameter tc selects the solution from the family (2.3) that best approximates the blow-up behavior of a
general solution as u → ∞ [7] for which (2.8) would give the rate of convergence |(tc−t)u(t)−Ū | = O([tc −t]7/2)

as t → tc. Selecting the wrong blow-up time yields one of the members of the family (2.3) that spreads algebraically
in time from the observed blow-up, or in similarity variables a solution that separates exponentially in s from Ū . A
priori determination of optimal parameters (i.e. prediction of blow-up time) from initial condition is a challenging
question for many problems [7].

2.2 Instability of self-similar decay for t > tc

For t > tc, it is convenient to describe the decaying solutions in terms of the variables

u(t) = τ̌−1Ǔ (š), τ̌ = t − tc, š = log τ̌ , (2.12)

where š, τ̌ → ∞ as t → ∞. This yields an equation comparable to (2.6),

d3Ǔ

dš3 − 6
d2Ǔ

dš2 + 11
dǓ

dš
− 6Ǔ = Ǔ 4. (2.13)

The nontrivial fixed point of this equation is Ū = − 3
√

6 corresponding to the self-similar solution (2.4b). Proceeding
with the linear stability analysis of this fixed point yields λ̌1 = −1, λ̌2,3 = 7/2 ± i

√
23,

Ǔ ∼ Ū + c1e−š + c2e7š/2 cos(
√

23 š)+ c3e7š/2 sin(
√

23 š). (2.14)

We can again identify the first eigenmode as a symmetry mode, associated with the action of the shift of the
parameter tc = t ′c + β̌. Analogous to (2.10), this now yields a one parameter family of solutions

u(t) = 1

τ̌ ′

[
1

1 − β̌e−š′ Ǔ
(

š′ + log
(

1 − β̌e−š′))]
= 1

τ̌ ′ Ǔ
(
š′) . (2.15)

When this time-shift is applied to the self-similar solution, we obtain

Ǔ(š′) = Ū

1 − β̌e−š′ = Ū + β̌Ūe−š′ + O
(
β̌2

)
. (2.16)

Here the consequence of an arbitrary choice of tc is a decaying perturbation corresponding to λ1 = −1. This can
be expected since the error becomes small as t → ∞ and the influence of tc fades into the past. However, the other
modes have Re(λ̌2,3) > 0 and represent genuine instabilities so the algebraically decaying behavior described by
(2.4b) is unstable to perturbations for t → ∞.

2.3 Global behavior

We are now in position to make statements about the behavior of solutions of (2.1) starting from generic initial data
at some time t0. The trivial and infinite-time decay solutions are unstable, so those behaviors will not commonly
occur. In fact, the self-similar decaying solution traces out a one-dimensional manifold of solutions attracted to the
origin. Solutions from all other initial conditions will be attracted to the stable self-similar finite-time blow-up given
by (2.4a) for some t+c > t0.

We may also inquire about the behavior backward in time, for t < t0. Noting that (2.1) is invariant under the
reflection symmetry, u → −u and t → −t , our stability results also apply backward in time. Namely, as t decreases
from t0, generic solutions will blow-up with u → −∞ as t decreases towards some t−c ; only solutions given exactly
by (2.4b) will exist for all earlier times, −∞ < t < t0.
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Stability and dynamics of self-similarity 17

Fig. 1 Computed solution
(solid curve) of (2.1)
starting from initial data at
t0 = 0 compared with the
optimal self-similar
solutions at t−c , t+c (dashed
curves)

Fig. 2 (Left) A 3-D phase-space representation of solutions starting from perturbations of (2.3) at t = 0. Solutions eventually converge
to the manifold of singular solutions (2.17) (the diagonal line) for |u| → ∞. (Right) Phase plane representation (2.18) of solutions of
(2.1)

Figure 1 shows a computed solution on t−c < t < t+c , starting from initial data
(
u, u′, u′′) = (1, 0, 0) at

t0 = 0 with the optimal similarity solutions that give the asymptotics of its blow-up behaviors at t−c ≈ −3.856 and
t+c ≈ 2.592. These values for tc can be estimated from (2.3) in terms of a general solution of (2.1) if |u(t)| is large,
u(t∗) = u∗ yielding tc ≈ t∗ + 3

√
6/u∗. For solutions with initial conditions lying in a neighborhood close to (2.3), we

can observe the spiral transient structure predicted by (2.8). Figure 2(left) shows solutions in a scaled phase-space(
u3, u′u, u′′) motivated by the scaling (2.2) in that all three axes scale like O(U3). In this representation, all of the

singular solutions (2.3) lie on a single diagonal line,(
ū3, ū′ū, ū′′) =

(
62/3θ, 61/3θ, 2θ

)
− ∞ < θ < ∞. (2.17)

Generic trajectories will approach the diagonal as t → ±∞ for which u → ±∞.
Finally, recall that an autonomous ODE of degree n with a scale invariance can be reduced by a change of both

independent and dependent variables to a system of degree n−1 [31, Chap. 3], [30, Chap. 4], [33, Chap. 2]. Equation
2.17 suggests two scale-invariant variables, F = u′/u2, G = u′′/(u′u), and the rescaling symmetry motivates the
independent variable ζ = log |u| which transforms the rescaling symmetry in u into a translational symmetry in ζ .
This reduces (2.3) to an autonomous system [68],

dF

dζ
= G − 2F,

dG

dζ
= 2(G − 2F)+ 1 − F(G − 2F)2 − 7F2(G − 2F)− 6F3

F2 , (2.18)

whose phase plane is graphed in Fig. 2(right). One can analyze this system with standard phase plane methods,
however caution is needed for solutions passing through u = 0 as F,G and ζ all become singular. Here solution
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18 A. J. Bernoff, T. P. Witelski

(2.3) is represented by the fixed point (F,G)= (
6−1/3, 2 × 6−1/3

)
; see Fig. 2(right). Linear stability analysis shows

this fixed point to be a stable spiral. Note that when |u| increases, so does ζ and the linear stability of the fixed point
in effect reproduces the stability analysis of (2.7); the reduction to the second-order system has eliminated the c1

symmetry mode in (2.8). Note that |u| → 0 corresponds to ζ → −∞, hence decaying behavior of u(t) maps onto
time-reversed trajectories in the phase plane, with ζ → −ζ . Consequently the spiral fixed point also describes the
instability analyzed in (2.14).

3 Self-similar spreading in a semi-linear heat equation with absorption

We consider positive solutions of the semi-linear heat equation with absorption for a temperature field u(x, t),

ut = uxx − |u|qu, (3.1)

for q > 0 with finite-mass non-negative initial data on the real line, u(x, 0)= I (x), that decays exponentially in
the far-field. These initial conditions become uniformly positive for t > 0 due to the infinite speed of propagation
of diffusion. As such, we can replace |u|qu with uq+1 in (3.1), yielding

ut = uxx − uq+1, (3.2)

which will be used for the remainder of this section.
Physically, u(x, t) can be interpreted as a dimensionless temperature in a system subject to linear diffusion with

a non-linear absorption term modeling the loss of heat; typically u(x, t) is measured relative to the external ambient
temperature and the heat loss is a power-law determined by the geometry or the physics (for example Stefan’s law of
cooling which would yield q = 3). We will show that the competition between diffusion and absorption determines
the asymptotic behavior of the solution. We give a heuristic argument for the asymptotic behavior of the solution
and then show how to quantify our predictions using similarity variables.

This equation has a maximum principle; at the maximum of u(x, t) diffusion can only act to reduce the ampli-
tude of the solution. As such, the absorption term can be used to prove a decay bound [47]. If we define umax(t) =
maxx u(x, t) then umax(t) is bounded by the solution of du/dt = −uq+1, namely

umax(t) ≤ umax(0)(
1 + q [umax(0)]q t

)1/q . (3.3)

Hence solutions decay like O(t−1/q) as t → ∞ for q > 0.
In the absence of the absorption term, Eq. 3.2 is just the heat equation ut = uxx ; exponentially-localized,

finite-mass initial conditions will approach a Gaussian solution at large times,

u ∼ ū(x, t) ≡ mc√
4π(t − tc)

exp

(
− (x − xc)

2

4(t − tc)

)
t → ∞, (3.4)

where mc is the mass of the solution, xc is the center of mass, and tc can be determined from the variance of the
initial condition. The key feature to note in this solution is that the amplitude decays like O(t−1/2).

Both absorption and diffusion decrease the solution’s amplitude. As seen in (3.3), absorption scales the amplitude
of the solution proportional to t−1/q while diffusion does so proportional to t−1/2. The mechanism that reduces the
temperature most rapidly will dominate (see the discussions in [39–42,44,47]). Specifically:

– For q > 2 diffusion dominates and the solution approaches a Gaussian (3.4) whose amplitude decays like t−1/2

as t → ∞.
– For 0 < q < 2 absorption dominates and the solution approaches a non-Gaussian self-similar decaying profile,

whose amplitude scales like the absorption bound (3.3), t−1/q as t → ∞.
– For the critical case of q = 2 the rates of absorption and diffusion coincide. The solution approaches a Gaussian

profile but the amplitude’s decay rate has acquired a logarithmic correction, (t log t)−1/2 as t → ∞.

Following the approach of Wayne [42], we will show how to associate this change of behavior with a bifurcation
in q of the trivial solution in similarity variables.

123



Stability and dynamics of self-similarity 19

3.1 Similarity variables

We apply the dimensional scaling,

u(x, t) = U û
(
x̂, t̂

)
, t = T t̂, x = L x̂, (3.5)

transforming (3.2) to[
1

T

]
ût̂ =

[
1

L2

]
û x̂ x̂ − [

Uq]
ûq+1. (3.6)

Scale-invariance determines U = T−1/q and L = T1/2, namely the amplitude decays at a rate dependent on q
while the solution spreads diffusively for T → ∞. Consequently, we write solutions of (3.2) in terms of similarity
variables as

u(x, t) = τ−1/qU (η, s), τ = t − tc, η = x − xc√
τ
, s = log τ, (3.7)

where xc, tc are constants. This yields the similarity PDE for U (η, s),

Us = 1

q
U + 1

2
ηUη + Uηη − U q+1, (3.8)

with boundary conditions that U vanish exponentially in the far-field, U (|η| → ∞) → 0. These boundary conditions
are motivated by the exponentially localized initial conditions considered earlier. If one relaxes these conditions,
there exist a one-parameter family of self-similar solutions with algebraic decay in the far-field, some with finite
mass and some with infinite mass [39,41,44]; these solutions will not be discussed here. Self-similar solutions are
s-independent steady states of this problem, U = Ū (η),

0 = 1

q
Ū + 1

2
ηŪη + Ūηη − Ū q+1. (3.9)

Linearizing (3.8) about the self-similar solutions, U (η, s) ∼ Ū (η)+ εŨ (η, s), yields the equation

Ũs = LŨ , LŨ ≡ 1

q
Ũ + 1

2
ηŨη + Ũηη − (q + 1)Ū qŨ , (3.10)

which can be solved via separation of variables, Ũ (η, s) = φ(η)eλs , to yield the eigenvalue problem for the linear
stability of Ū (η),

λφ = Lφ, (3.11)

where φ decays exponentially as η → ±∞.

3.2 Diffusion-dominated spreading via stability of the trivial solution

For the stability of the trivial solution, Ū (η) ≡ 0, (3.11) reduces to

λφ = 1

q
φ + 1

2
ηφη + φηη. (3.12)

This is a shifted Hermite operator yielding the discrete set of eigensolutions,

φk(η) = Hk(η/2)e
−η2/4, λk = 1

q
− k + 1

2
, k = 0, 1, 2, . . . , (3.13)

where Hk(y) are the Hermite polynomials, H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, . . .. The largest eigenvalue
is λ0 = 1

q − 1
2 , from which we see that the trivial solution changes stability at q = 2. All of the eigenvalues are
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20 A. J. Bernoff, T. P. Witelski

negative for q > 2 hence we expect the trivial solution to be stable, and the long-time behavior to be given by the
slowest decaying eigenmode,

U ≈ Ũ (η, s) =
∞∑

k=0

akφk(η)e
λk s ∼ a0φ0(η)e

λ0s . (3.14)

Noting that τ−1/qeλ0s = (t − tc)−1/2, written in original variables, the first term in the series yields the Gaussian
solution (3.4) with mc = a0

√
4π being the “effective mass” of this solution at large times.1 Solution (3.4) was

shown to be a global attractor for (3.2) for q > 2 with finite-mass exponentially localized initial conditions [39].
Note that the second term in the expansion, φ1(η)eλ1s , yields a correction of O((t − tc)−1) to (3.4), but there may
also be larger nonlinear contributions to the error as we show below.

This solution may seem surprising in that it has fixed mass even in the presence of the absorption term; for q > 2
only a finite proportion of the initial mass is lost as t → ∞. Consider the integral of the solution in similarity
variables,

M(s) =
∞∫

−∞
U (η, s) dη > 0. (3.15)

In terms of M , (3.8) yields

dM

ds
= λ0 M −

∞∫
−∞

U q+1 dη. (3.16)

For q > 2, λ0 < 0 and M(s) decays to zero, with the linear term controlling the large-time behavior of the solution.
Assuming the behavior U (η, s) ∼ a0φ0(η)eλ0s in (3.16) yields the asymptotic expansion

M(s) ∼ mceλ0s + O
(

e(q+1)λ0s
)

as s → ∞, (3.17)

where the error term comes from the nonlinear absorption. We see that the first term from (3.17) corresponds to (3.4)
and we can now combine the error terms from the linear and nonlinear estimates to yield O

([t − tc]− min(1,(q−1)/2)
)

as t → ∞.
In fact, solution (3.4) for q > 2 could also be predicted from the dimensional analysis in (3.6), i.e., another choice

for the scalings exists. As before, L2 = T, but if Uq < 1/T for T → ∞ then the absorption term is sub-dominant
and would not play a role in determining the similarity solution, reducing (3.2) to the heat equation, ut = uxx . The
heat equation’s large-time asymptotics are well studied; see for example [42] or the discussion in [7] based on earlier
works [8, Chap. 4], [9,10]. Solutions of the heat equation on the real line conserve the integral

∫
u dx = UL

∫
û dx̂ ,

so U is determined by U = 1/L = T−1/2. This gives Uq = T−q/2 so if q > 2 then Uq � 1/T for T → ∞,
consistent with the conclusion based on the stability analysis.

Solutions like (3.4) determined by a dominant balance in which not all of the terms from the governing equation
are present are sometimes called asymptotically self-similar solutions. This is in line with Barenblatt’s description
of self-similar solutions serving as intermediate asymptotic states for t → ∞ [1, p. 171].

For q > 2, we have established that at large times the solution to the semi-linear heat equation with absorption
is diffusion-dominated and approaches the Gaussian solution (3.4), familiar to us as the Green’s function for the
heat equation.

Finally, we note that there are three free parameters in the Gaussian (3.4): the mass (mc), the center of mass
(xc), and the critical time associated with the variance of the solution (tc). A solution of (3.2) for q > 2 starting
from any appropriate initial data will be asymptotic to the Gaussian for some choice of these parameters. Since
mass is not conserved for all times, it is nontrivial to select mc to ensure that |u(x, t) − ū(x, t)| � O(t−1/2) as
t → ∞ [1, p. 152]. Using the ideas of optimal asymptotics [7,9] one can in principle choose parameters xc, tc to
eliminate the contributions to the error term from the λ1, λ2 eigenmodes, to reduce the linear error term in (3.14)
from O([t − tc]−1) to O([t − tc]−2). The nonlinear error from (3.17) will persist independent of these choices.

1 In fact, since λk − 1/q = −(k + 1)/2, series (3.14) yields ũ = ∑
k akφk(η)(t − tc)−(k+1)/2.
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3.3 Bifurcation to nonlinear spreading

As q decreases through 2, the zero state loses stability to a branch of nonlinear solutions. To describe this bifurcating
branch of solutions, we perform a center manifold expansion [42], [69, Chap. 6], [70, Chap. 3].

It is convenient to use the L2 inner-product, 〈v,w〉 = ∫ ∞
−∞ vw dη, to project perturbations onto the set of

eigenfunctions. Then the adjoint problem to (3.12) is

λψ = 1

q
ψ − 1

2
ψ − 1

2
ηψη + ψηη, ψ(|η| → ∞) → 0, (3.18)

yielding adjoint eigenfunctionsψk(η)= Hk(η/2). If q = 2+ε, then λ0 =−ε/4+ O(ε2) so solutions evolve slowly.
Consequently, we can do a weakly nonlinear analysis for ε → 0. Taking U (η, s) ∼ A0(s)φ0(η) and projecting
(3.8) onto ψ0 at leading order yields the amplitude equation

dA0

ds
= λ0 A0 − A3

0√
3
. (3.19)

This equation has two branches of steady solutions,

Ā0 = 0, and Ā0 =
(
(2 − q)

√
3

2q

)1/2

for q < 2. (3.20)

This is a supercritical pitchfork bifurcation; for q > 2, the zero state is stable, as shown in the previous section. For
q < 2 there is a change of stability to the nontrivial branch. In terms of original variables, this yields the similarity
solutions for q ↗ 2,

u(x, t) ≈
(
(2 − q)

√
3

2q

)1/2

τ−1/qe−η2/4. (3.21)

For the critical case q = 2, λ0 = 0 yielding a degenerate case for (3.19). The solution A0 = 0 is now nonlinearly
stable; solving for A0(s) yields A0(s) = (

√
3/(2s + C))1/2, corresponding to asymptotic behavior for t → ∞

u(x, t) ≈ (3/4)1/4[τ log τ ]−1/2e−η2/4. (3.22)

The logarithmic dependence on τ here reflects the fact that in the critical case A0 is decaying only algebraically, as
opposed to exponentially, with respect to s.

3.4 The branch of positive self-similar solutions for 0 < q < 2

Self-similar solutions of (3.2) for 0 < q < 2 are nontrivial solutions of (3.9),

1

q
Ū + 1

2
ηŪη + Ūηη − Ū q+1 = 0,

with Ū → 0 exponentially as |η| → ∞. This problem has a unique branch of positive finite-mass solutions on
0 < q < 2. We note that additional branches of unstable solutions bifurcate from the zero-state at q = 2/(k + 1)
for k = 1, 2, . . . (that is when λk = 0); these solutions have sign-changes and are not considered here [47].

There are no closed-form analytic Ū (η), so the solutions for this problem must be computed numerically. Seeking
symmetric solutions, we impose Ūη(0) = 0 and compute for positive η. One possible approach is a shooting method
starting from η = 0 with the value for Ū (0) as a shooting parameter. Alternatively, a global relaxation method based
on a Newton–Raphson fixed-point iteration for a finite-difference discretization of the boundary-value problem for
(3.9) can be implemented [64]. To carry out the computation on a large but finite domain, we need to determine
an appropriate far-field boundary condition; this can be done by applying WKB analysis to (3.9) linearized about
Ū = 0 yielding [44,40]

Ū (η) ∼ C |η|−1+2/qe−η2/4 |η| → ∞. (3.23)
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Fig. 3 (Left) The numerical computed self-similar solution Ū (η) for q = 1 and (right) the branch of positive self-similar solutions on
0 < q < 2 with the asymptotes for q → 0 and q → 2, (3.20)

This estimate is a non-monotone function, but the condition |η| � √[4 − 2q]/q ensures a sufficiently large com-
putational domain so that it captures the form of the solution and leads to a reliable homogeneous Robin boundary
condition,

dŪ

dη
+

(
1

2
η + q − 2

qη

)
Ū = 0 as |η| → ∞. (3.24)

See Fig. 3(left) for the solution for q = 1, with solutions for other values of q having the same qualitative form.
As q decreases to zero, the amplitude of the solutions increases monotonically. For the limit q → 0 we follow

the analysis in [47] in rescaling the solution by Ū (η) = q−1/q V̄ (η) and expanding |V̄ |q ∼ 1 + q log |V̄ | to obtain
the leading-order equation for the solution profile,

1

2
ηV̄η + V̄ηη − V̄ log |V̄ | = 0. (3.25)

Solution of this problem via shooting suggests V̄ (0) ≈ 0.963 and gives a good estimate of the amplitude of the
positive self-similar solutions for q → 0; see Fig. 3(right).

3.5 Linear stability of the positive self-similar solutions for 0 < q < 2

Having obtained the solutions Ū (η) in numerical form, we can similarly numerically solve the stability problem
(3.11) to obtain some of the largest eigenvalues in the spectrum [64]. Analogous to (3.24), applying WKB to
Lφ = λφ gives us convenient far-field boundary conditions for the eigenfunctions,

dφ

dη
+

(
1

2
η + q − 2

qη

)
φ = −2λ

η
φ |η| → ∞. (3.26)

The discretized problem is now a matrix eigenvalue/eigenvector problem and can be solved using inverse iteration
or other methods from numerical linear algebra. Important insight is gained by comparing these computed results
against the analytical predictions; see Fig. 4.

For q → 2, we can use the center-manifold analysis from Sect. 3.3 to deduce the spectrum. The leading-order
behavior of the largest eigenvalue is governed by the linearization of (3.19) around the steady state on the center
manifold,

λ0(q) ∼ 2 − q

2q
− 3√

3
Ā2

0 = −2 − q

2
, (3.27)
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while the eigenvalues associated with stable manifold remain constant to leading order for q → 2,

λk(q) ∼ −k/2 k = 1, 2, . . . . (3.28)

Two of the eigenmodes are consequences of the invariance of the original PDE with respect to shifts in x or t and the
form of the similarity variables (3.7). As in Sect. 2.1, if the constant tc is subject to a shift, tc = t ′c +β, one solution
of (3.2) is transformed to another, and in terms of similarity variables, when applied to a self-similar solution, takes
the form

u(x, t) = (
τ ′)−1/q

[(
1 − βe−s′)−1/q

Ū

(
η′ (1 − βe−s′)−1/2

)]
= (

τ ′)−1/q U (
η′, s′) . (3.29)

Expanding U for β → 0 yields

U (
η′, s′) ∼ Ū

(
η′) + β

(
1

q
Ū + 1

2
η′ dŪ

dη

)
e−s′ + O

(
β2

)
,

yielding the eigenmode connected with the tc → tc + β symmetry for all q,

φ(η) = 1

q
Ū + 1

2
η

dŪ

dη
, λ = −1. (3.30)

Similarly, for shifts of xc = x ′
c + γ we obtain

u(x, t) = τ−1/q Ū
(
η′ − γ e−s/2

)
= τ−1/q U (

η′, s
)
. (3.31)

Expanding U for γ → 0 yields

U (
η′, s

) ∼ Ū − γ
dŪ

dη
e−s/2 + O

(
γ 2

)
,

hence the eigenmode corresponding to spatial translation of xc for all q is

φ(η) = dŪ

dη
, λ = −1

2
. (3.32)

We have now identified the two eigenvalues λ = − 1
2 and λ = −1 with translations in space and time. One could

again remove the projections onto these modes at large time by optimal-asymptotic choices of xc and tc. However,
in this case there is little to be gained because as seen in Fig. 4 the largest eigenvalue, λ0(q), is greater that − 1

2 and
not associated with the symmetry modes. Unlike the q > 2 case, here there is no continuous family of solutions
with respect to mc for arbitrary mass. The integral M̄(q) = ∫

Ū dη is uniquely defined for each q and scales like
Ū (0; q); see Fig. 3(right). As such, we expect that for q < 2 as t → ∞
u(x, t) ∼ τ−1/qŪ (η)+ O(τ−1/q+λ0(q)), (3.33)

where τ = t − tc and η = (x − xc)/
√
τ for any choice of xc and tc. In original variables, the mass, m = ∫

u dx , of
these solutions decays like O

(
τ 1/2−1/q

)
.

4 Self-similar finite-time blow-up in a higher-order PDE

We now consider the dynamics of the Sivashinsky equation,

ut = −
(

u2
)

xx
− σuxx − uxxxx . (4.1)

It is well known that this equation manifests self-similar blow-up [52,53,55,56,63] in which |u(x, t)| becomes
infinite at a point in finite time; here we show that it has multiple self-similar blow-up solutions and analyze
their stability. Analysis of finite-time blow-up and rupture in many higher order PDEs starts along similar lines
[21,22,26,59,63,71–73].
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Fig. 4 Numerically computed eigenvalues (solid curves) for
the stability of the positive self-similar solution Ū (η) on 0 <
q ≤ 2. The two q-independent symmetry modes λ = − 1

2 ,−1
are confirmed along with analytical predictions for the other
modes for q → 2 (dashed curves) (3.27, 3.28)

Fig. 5 Numerical simulation of an initial value problem for
(4.3) with Neumann boundary conditions on −1 ≤ x ≤ 1

Using the non-dimensionalization (3.5) in (4.1) yields[
1

T

]
ût̂ = −

[
U

L2

] (
û2

)
x̂ x̂

− σ

[
1

L2

]
û x̂ x̂ −

[
1

L4

]
û x̂ x̂ x̂ x̂ . (4.2)

Finite-time blow-up behavior implies that U → ∞ at a finite critical time tc; as such, T scales as the remaining
time till blow-up and we will study the scaling behavior near blow-up, namely as T → 0. Examining the two
second-order terms suggests that the linear term, σuxx , will be negligible compared to the nonlinear term, (u2)xx ,
in the limit of blow-up. Hence, while the linear diffusive term plays a role in determining the existence and stability
of steady states, it is sub-dominant in the asymptotic limit of self-similar blow-up. Consequently the reduced form
of (4.1) that yields the invariant scalings U = T−1/2,L = T1/4 is

ut = −
(

u2
)

xx
− uxxxx . (4.3)

The similarity solutions of (4.3) are the asymptotically self-similar solutions of (4.1). This finite-time behavior
corresponding to T → 0 with the solution blowing up (U → ∞), and the lengthscale vanishing (L → 0), describes
so-called focusing singularities.

Figure 5 shows a numerical simulation of (4.3) on −1 ≤ x ≤ 1 with Neumann boundary conditions and initial
data u(x, 0) = 5+cos(πx)/10. The results are suggestive of finite-time blow-up at xc = 0. Not all initial conditions
for the Neumann problem for (4.3) lead to blow-up; Bernoff and Bertozzi [55] classified which initial data lead to
constant steady solutions vs. finite-time blow-up using a combination of bifurcation theory and some ideas due to
Palais [74]. We will demonstrate below that this simulation converges to a self-similar blow-up solution.

4.1 Similarity variables

The above scalings motivate the choice of similarity variables [55,63],

u(x, t) = τ−1/2U (η, s), τ = tc − t, η = (x − xc)/τ
1/4, s = − log τ, (4.4)

where xc, tc are constants giving the blow-up position and time. Self-similar solutions are s-independent solutions,
U (η, s) = Ū (η).

Returning to the simulation shown in Fig. 5, one can ask how to empirically show that self-similar dynamics are
being approached without knowing xc, tc a priori. A simple estimate of the blow-up position xc is given by the point
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Fig. 6 Convergence of the simulation from Fig. 5 to finite-time self-similar blow-up: (left) convergence of the simulation (dots) to the
amplitude scaling relation U = O(T−1/2) and (right) rescaled spatial profiles (dotted curves) converging to a normalized similarity
solution Ū1(η) (solid curve, envelope)

where u(x, t) reaches a maximum. We take the maximum value of u(x, t), umax(t) ≡ u(xc, t), as a measure of the
instantaneous amplitude scale. Near blow-up we expect umax ∼ U ∼ T−1/2 and ut ∼ U/T ∼ T−3/2. Consequently
if ∂t umax ∼ u3

max the self-similar scaling of the amplitude is being approached as U → ∞; this prediction is verified
in Fig. 6(left). Likewise, using the relation L ∼ U−1/2 to provide a measure of the lengthscale in terms of umax we
can plot convergence of the rescaled u(x, t) profiles to a normalized self-similar solution Ū (η); see Fig. 6(right).

The change of variables (4.4) transforms (4.3) into the similarity PDE,

Us = −1

2
U − 1

4
ηUη −

(
U 2

)
ηη

− Uηηηη. (4.5)

Steady states of (4.5) correspond to self-similar blow-up solutions of (4.3) whose stability will be determined via
linear stability analysis in similarity variables.

The choice of boundary conditions for (4.5) needs some discussion. For localized blow-up, at any fixed x away
from xc as τ → 0, the solution can be expected to remain bounded, u(x, t) = O(1). This suggests that in the
rescaled variables U ∼ O(τ 1/2) → 0 as |η| → ∞. This boundary condition may be refined. While the blow-up
solution diverges rapidly in a neighborhood of size τ 1/4 of xc, away from xc the solution will be slowly varying in
time, ut = O(1). Written in terms of U , this yields a Robin boundary condition,

Us + 1

2
U + 1

4
ηUη = O

(
τ 3/2

)
→ 0, |η| → ∞. (4.6)

More explicitly we expect that this boundary condition holds in the matching region O(1) � |x − xc| � O
(
τ 1/4

)
.

Steady solutions in the similarity variables, Ū (η), corresponding to self-similar blow-up profiles satisfy the
nonlinear ODE boundary-value problem

0 = −1

2
Ū − 1

4
ηŪη −

(
Ū 2

)
ηη

− Ūηηηη, (4.7a)

1

2
Ū + 1

4
ηŪη = 0 |η| → ∞. (4.7b)

The boundary condition (4.7b) implies that in order to match to outer solutions, self-similar solutions must have the
far-field structure Ū (η) ∼ c0/η

2 for some constant c0. For |η| → ∞, the algebraic behavior of solutions of (4.7a)
can be obtained as a series

Ū (η) ∼
∞∑
j=0

c j

η2+4 j
, (4.8)
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Fig. 7 Multiple similarity solutions to the Sivashinsky equation: (left) the first three self-similar solutions and (right) a different view
showing the first 10 numerically computed self-similar solutions Ū�(η), � = 1, 2, . . . , 10

where the coefficients c j for j = 1, 2, 3, . . . are polynomials in c0. This might suggest the existence of a one-param-
eter continuous family of solutions, but numerically we find only symmetric solutions for isolated exceptional values
of c0. To understand why these values are isolated, consider linearizing the similarity equation (4.7a) around a partic-
ular solution for Ū (η). Applying WKB analysis for η → ±∞ shows that for a given c0, there are two exponentially
growing modes, an exponentially decaying mode and an algebraic mode asymptotic to 1/η2 which is associated
with changes in c0. Suppressing the two exponentially growing modes at each of η → ±∞ yields four boundary
conditions on this fourth-order linear homogeneous problem, which generically will have only the trivial solution,
suggesting that the values of c0 are isolated. 2 In addition, equation (4.7a) has a conserved integral which can be
used to argue that there are only symmetric similarity solutions [55], as is seen in Fig. 7.

The first few of a discrete, countably infinite family of self-similar solutions, Ū�(η), for � = 1, 2, 3, . . ., were
computed using an under-relaxed Newton–Raphson method [21,64], [76, Chap. 8] and are shown in Fig. 7. These
solutions can be indexed by the number of maxima. Bernoff and Bertozzi [55] showed that these solutions must
have zero mass,

∫
Ū dη = 0, to satisfy conservation of mass for u(x, t). Evans et al. [63] give a matched asymptotic

construction of the self-similar solutions for a more general version of (4.3) in the limit of a large number of extrema.
Their computational approach is comparable to [25,26,64] and is described in terms of a one-parameter shooting
search as a function of the far-field parameter c0. While these solutions are very reminiscent of the families of dis-
crete localized multi-bump solutions of the Swift–Hohenberg equation, it is not clear how to embed the self-similar
solutions in continuous families as in “homoclinic snaking” [77,78]. Some results on existence and local uniqueness
for multi-bump blow-up solutions have been established using geometric dynamical systems analysis [79].

The first of these solutions, Ū1(η), is the profile that was observed in Fig. 6(right) from the numerical solution
of an initial-value problem, suggesting that it is a stable attractor describing finite-time blow-up dynamics [55].

4.2 Linear stability

Observing numerically that the self-similar solution Ū1(η) appears to be an attractor, the next step is to study its
stability using linear stability analysis.

To study the stability we linearize the similarity PDE (4.5) about the steady solution, U (η, s) = Ū (η)+εŨ (η, s),
yielding the problem

Ũs = LŨ , LŨ ≡ −1

2
Ũ − 1

4
ηŨη − 2

(
ŪŨ

)
ηη

− Ũηηηη, (4.9)

2 Similar nonlinear problems which also yield a countable set of discrete solutions have been studied using beyond-all-orders asymptotics
in [75].
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Fig. 8 Positive eigenvalues
for the self-similar solutions
of the Sivashinsky equation.
The eigenvalues at λ = 1/4,
1 are symmetry modes
associated with the space
and time translation
symmetries (and are
indicated with lines) as
opposed to any true
instability. The �
self-similar solution has 2�
positive eigenvalues

subject to boundary conditions (4.6) applied to Ũ . Separating variables as Ũ (η, s) = φ(η)eλs yields the eigenvalue
problem,

λφ = Lφ, (4.10a)

subject to the boundary conditions

− λφ = 1

2
φ + 1

4
ηφη |η| → ∞. (4.10b)

WKB analysis of the far-field [55,63] shows that suppressing exponentially growing modes yields four boundary
conditions (two each at η → ±∞) and produces a countable discrete spectrum. Numerical calculation of the
eigenvalues for the first few self-similar solutions are shown in Fig. 8; the eigenvalues are indeed discrete and all
appear to be purely real.

The eigenfunctions have the far-field form φ = O(|η|−(2+4λ)) for |η| → ∞. Note that the stable eigenmodes
with λ < − 1

2 are growing spatially for large |η| while decaying temporally like eλs and describe convergence in the
far-field of η of general initial conditions to the self-similar solutions, Ū (η). In the original variables, these modes
decay like τ−λ−1/2 at the blow-up point.

Figure 8 shows that there are no modes with − 1
2 ≤ λ ≤ 0. Modes with positive eigenvalues have eigenfunctions

that decay in space more rapidly than O(η−2), so they involve corrections to the form of the solution close to
the blow-up point xc. To properly interpret the positive part of the spectrum we need to examine the role of the
continuous symmetries in similarity variables.

Like the semi-linear heat equation (3.2), Eq. 4.3 has continuous symmetries with respect to translation in time
and translation in space. As in Sect. 3.5, we consider how these symmetries act on solutions of (4.5) expressed in
similarity variables.

Invariance with respect to translation in time allows us to find a one-parameter family of solutions with different
blow-up times. If we set tc = t ′c + β, one solution of (4.3) is transformed to another, and in terms of similarity
variables, when applied to a self-similar solution Ū (η), takes the form

u(x, t) = (
τ ′)−1/2

[(
1 + βes′)−1/2

Ū

(
η′ (1 + βes′)−1/4

)]
= (

τ ′)−1/2 U (
η′, s′) . (4.11)

where τ ′ = t ′c − t, η′ = (x − xc)/
(
τ ′)1/4, and s = − log τ ′. Note that U (

η′, s′) describes a one-parameter family
of solutions with blow-up times shifted by β. Expanding U about our original solution at β = 0 yields

U (
η′, s′) ∼ Ū − β

(
1

2
Ū + 1

4
η′ dŪ

dη

)
es′ + O

(
β2

)
.

The O(β) term in the expansion must satisfy the linear stability problem (4.9), and we can identify the eigenmode
connected with the time-translation symmetry,

φ(η) = 1

2
Ū + 1

4
η

dŪ

dη
, λ = 1. (4.12)
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Note that the one-parameter family of solutions is diverging exponentially in the s variable (and algebraically in
τ = tc − t); as such although the eigenvalue λ = 1 is positive, it is a symmetry mode associated with the exponential
stretching on this one-parameter manifold of blow-up solutions, not an instability. Choosing the blow-up time as
the optimal-asymptotic value will remove the projection onto this mode.

Similarly, for shifts of the blow-up position, xc = x ′
c + γ , we obtain

u(x, t) = τ−1/2 Ū
(
η′ − γ es/4

)
= τ−1/2 U (

η′, s
)
. (4.13)

Expanding U for γ → 0 yields

U (
η′, s

) ∼ Ū − γ
dŪ

dη
es/4 + O

(
γ 2

)
,

hence the eigenmode corresponding to spatial translation of xc is

φ(η) = dŪ

dη
, λ = 1

4
. (4.14)

This positive eigenvalue is the symmetry mode associated with the exponential separation (in s) on the one-parameter
manifold of solutions with different blow-up positions.

Re-examining the positive spectrum of the self-similar solutions in Fig. 8 apart from the two symmetry modes we
have identified, we see that the first solution is the only stable similarity solution. contains only the two symmetry
modes. Each of the higher order self-similar solutions, Ū�(η) for � = 2, 3, . . ., has 2� − 2 other positive eigen-
values, associated with true instabilities which generically lead back to the global attractor, Ū1(η) [64]. The rate
of convergence to Ū1(η) is governed by the largest negative eigenvalue, λ∗.3 Since λ∗ < − 1

2 , these contributions
are of order τ−λ∗−1/2 at the blow-up point and decay in amplitude as blow-up is approached. Consequently, our
stability analysis, accounting for the role of symmetries in the problem, explains why of all the similarity solutions
that exist only the first one is observed in numerical simulations of the PDE.

5 Conclusions

In this paper we have discussed a methodology for identifying self-similar solutions and determining their stability.
For each example we apply the same systematic approach; first, we use dimensional analysis to identify appro-
priate scalings for similarity solutions. In similarity variables, steady states of the transformed governing equation
(similarity profiles) correspond to self-similar solutions in the primitive variables. We then use dynamical-systems
approaches to study the linear stability of these steady solutions. Spatial and temporal rescaling symmetries, whose
actions are simple in the primitive variables yield parametrized families of similarity solutions which diverge
(converge) exponentially in the similarity variables for finite-time blow-up (infinite-time spreading) solutions. Lin-
earizing the actions of these symmetries yields symmetry mode contributions to the spectrum of the linearization
around the similarity profiles.

Analyzing the spectrum accounting for these symmetries allows us to determine the stability of the similarity
solutions. For the ODE example we demonstrate that finite-time blow-up is the generic behavior both forward and
backward in time. For the semi-linear heat equation with absorption, we show that the linear spectrum can be used
to identify the bifurcation between diffusion-dominated and absorption-dominated spreading and review how to
perform a weakly-nonlinear bifurcation analysis at the transition between the two behaviors. For the Sivashinsky
equation, linear stability identifies the unique stable similarity profile of a countably infinite set of solutions.

In conclusion, we argue that linearization methods, combined with careful analysis of the associated symmetries,
provide a powerful tool for analyzing the stability of similarity solutions.

3 For an example see the computations in [21], which verify that the convergence rate for perturbations to finite-time self-similar
solutions match the prediction given by the largest eigenvalue from linear stability analysis.
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